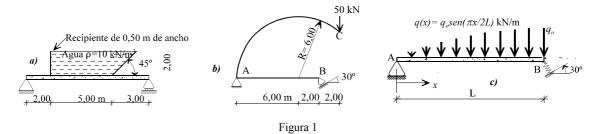
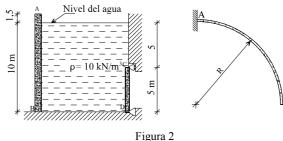
Prácticas Complementarias de Resistencia

Objetivos de estas prácticas:


Dos clases de objetivos contrapuestos:

- 1) Que el alumno resuelva problemas muy sencillos de los que, no obstante, se extraen enseñanzas generales de la Resistencia.
- 2) Que el alumno resuelva algunos problemas que incluyen casi todas las complejidades que se pueden presentar en la realidad —y en los exámenes—, como p.e. los 9, 11, 12 y 15 (marcados como PCE, Práctica Complementaria Especial), que tienen su solución colgada en la página:


http://ingstruct.mecanica.upm.es/node/10

Cualquier dificultad que el alumno tenga con estas prácticas deberá resolverla con su profesor en clase de teoría o en tutorías.

Reacciones

- 1) Dibujar sendos croquis con las reacciones acotadas en magnitud y sentido para las vigas de la figura 1. Para la viga 1c, calcular el error cometido al reemplazar la función senoidal con una parábola de 2º grado.
- 2) Calcular las reacciones del muro y de la compuerta de la figura 2a y del arco de la figura 2b sometido a su propio peso.

Esfuerzos

3) Dibujar sendos croquis con las leyes acotadas de esfuerzos para las vigas de la figura 3.

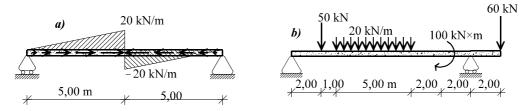


Figura 3

Esfuerzos (continuación)

4) Dibujar sendos croquis con las leyes acotadas de esfuerzos para las estructuras de la figura 4.

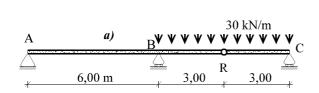
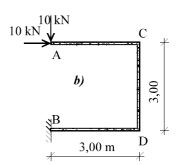



Figura 4

 $39 \text{ kN} \times \text{m}$

4,00 m

Figura 5

3.00

5) Dada la ley de momentos flectores de la figura 5, encontrar las cargas que la producen.

Tensiones

6) Un cuerpo elástico se encuentra en el siguiente estado de tensiones, constante en todo el cuerpo:

$$T = \begin{bmatrix} 600 & -300 \\ -300 & -400 \end{bmatrix} \text{ kN/m}^2$$

Las constantes elásticas del material son E=200 MPa, v=0.25. Se pide:

- a) Calcular las magnitudes de las tensiones principales y sus direcciones.
- b) Determinar la tensión normal sobre el plano OA y las tensiones tangenciales sobre los planos AB y BC.
- c) Suponiendo que no conocemos el tensor T pero sí las componentes de tensión encontradas en el apartado anterior, hallar T.
- d) Calcular el alargamiento del segmento OA (supuesto estado de tensión plana).
- *e)* Calcular el cierre (positivo) o apertura (negativa) del ángulo recto *OAB*. (Examen diciembre 2014.)

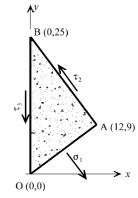


Figura 6

- 7) Dada la zapata rectangular rígida que se muestra en la figura 7*a*) de 1,20 m de ancho, se pide:
- *a)* Determinar los esfuerzos *N*, y *M* que recibe la zapata (referidos a su c.d.g.) cuando ésta transmite al suelo el diagrama de tensiones de la figura 7*b*).
- b) Dibujar y acotar el diagrama de tensiones que produciría la zapata sobre el suelo si ésta recibiera los esfuerzos N=250 kN (de compresión), $M=50 \text{ kN} \times m$.
- c) Ídem con los esfuerzos $N=200 \, kN$ (de compresión), $M=60 \, kN \times m$. Nota: Se recuerda que el suelo no admite tracciones.

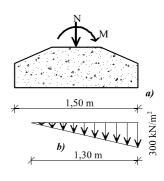


Figura 7

Tensiones (continuación)

- 8) La viga cargada de la figura 8a tiene por sección transversal la doble-T de la figura 8b. Se pide:
- a) Dibujar y acotar las leyes de esfuerzos cortantes y de momentos flectores en la
- b) Dibujar y acotar el diagrama de tensiones normales en la sección que las tenga mayores.

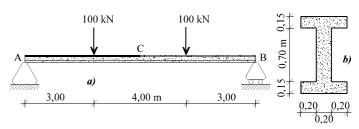
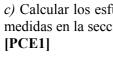



Figura 8

- c) Dibujar y acotar el diagrama de tensiones tangenciales en la sección que las tenga mayores.
- d) Demostrar el equilibrio entre tensiones normales y tangenciales en la porción de ala superior comprendida entre el apoyo A y la sección centro de luz C de la viga (en negro en la figura 8a).
- 9) La sección en T de la figura 9 está formada por dos materiales cuyos módulos de elasticidad se dan en la propia figura. Si Pertenece a una viga cargada. En el laboratorio se miden sus deformaciones en las fibras extremas, que son las que se muestran en la propia figura. Se pide:
- a) Dibujar el diagrama de deformaciones de la sección y calcular la curvatura.
- b) Dibujar y acotar el diagrama de tensiones normales de la sección.
- c) Calcular los esfuerzos que dieron lugar a las deformaciones medidas en la sección.

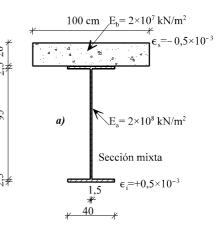
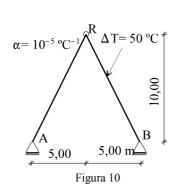
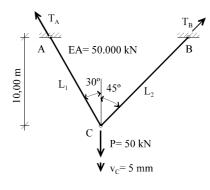
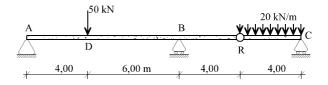



Figura 9

Movimientos

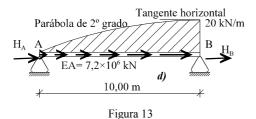
10) El pórtico triarticulado de la figura 10 sufre sólo en la barra RB el incremento de temperatura mostrado. Calcular los movimientos de su rótula R.

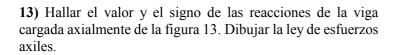


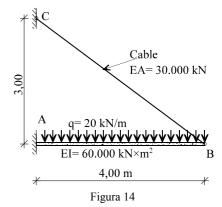

Figura 11

- 11) En la estructura formada por dos cables de la figura 11, determinar el esfuerzo axil en cada cable para los dos casos de carga siguientes:
- a) La carga vertical P aplicada en el nudo C, que se muestra en la figura.
- b) El desplazamiento vertical v_C impuesto en el nudo C que se indica en la figura (sin permitir movimiento horizontal u_C).

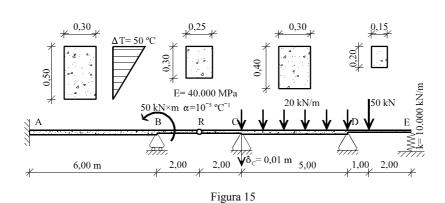
[PCE2]


Movimientos (continuación)


12) Calcular los movimientos de todos los puntos con nombre de la viga de la figura 12. [PCE3]



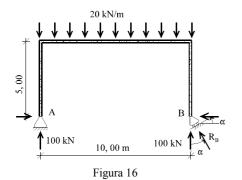
Hiperestáticas

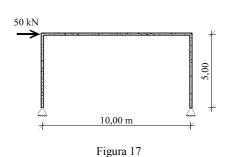

Figura 12

14) Dibujar y acotar la ley de momentos flectores de la ménsula atirantada de la figura 14. (En la viga se desprecian las deformaciones por axil y cortante.)

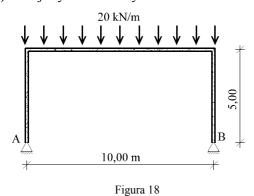
15) La viga continua de cuatro vanos de la figura 15 tiene una rótula en el punto medio R del vano BC. Las secciones de los vanos son rectangulares, distintas todas ellas y se dibujan encima de cada vano. El material es hormigón; su módulo de elasticidad y su coeficiente de dilatación se dan en la figura. La rigidez del apoyo elástico en E se da también en la figura. Las cargas son:

- Deformaciones impuestas por una variación térmica en el vano AB lineal sobre el canto, mostrada en la figura.
- Un movimiento impuesto consistente en un descenso del apoyo C, indicado en la figura.
- Las siguientes cargas mecánicas:
 - un momento exterior concentrado sobre el apoyo B;
 - una carga uniforme sobre el vano *CD*;
 - una carga puntual excéntrica sobre el vano DE.


Se pide dibujar sendos croquis acotados con:


- a) La lev de momentos flectores.
- b) Las reacciones de los apoyos.
- c) La ley de curvaturas.
- d) La deformada a estima.

[PCE4]


Pórticos, arcos

16) Calcular la inclinación α óptima del apoyo deslizante B del pórtico de la figura 16 para que el máximo momento flector en la estructura sea lo menor posible.

- 17) Dibujar y acotar la ley de momentos flectores del pórtico de la figura 17.
- 18) Dibujar y acotar la ley de momentos flectores del pórtico de la figura 18.

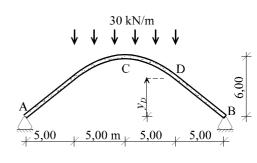
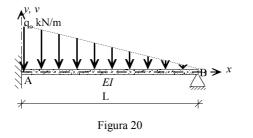
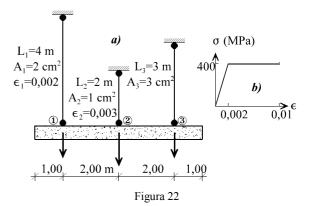



Figura 19

19) En la figura 19 se ha construido el arco antifunicular de la carga dada. Se pide: Calcular los esfuerzos en la clave C, la cota que ha de tener el punto D y el esfuerzo axil en el tramo BD.

Ecuaciones, pandeo

20) Integrar la ecuación diferencial para obtener las reacciones y el máximo momento flector de la viga de la figura 20.



21) Determinar el valor de la carga crítica P_{crit} de la viga rígida de la figura 21.

Figura 21

Plasticidad

- **22)** La estructura de la figura 22*a* se compone de un sólido infinitamente rígido que cuelga de tres cables verticales de distintas longitudes y secciones. Las características elásticas del material de los cables se dan en la figura 22*b*. Se han medido las deformaciones de los cables 1 y 2 y sus valores se dan en la figura 22*a*. Se pide:
- a) Calcular los esfuerzos axiles en los cables 1 y 2.
- b) Calcular el esfuerzo axil del cable 3.

- **23)** La sección rectangular de la figura 23*a* está construída con el material cuyas características elastoplásticas se dan en la figura 23*b*, en la que se observa una ductilidad limitada de 4. Cuando esta sección esté sometida al momento de rotura, se pide:
- a) Dibujar el diagrama de deformaciones de la sección.
- b) Calcular la curvatura (de rotura) de la sección.
- c) Dibujar el diagrama de tensiones de la sección.
- d) Calcular el momento de rotura M_r .
- e) Dibujar el diagrama de tensiones residuales de la sección cuando se descarga inmediatamente antes de alcanzar dicho momento M_v .
- f) Dibujar el diagrama de deformaciones residuales de la sección.
- g) Calcular la curvatura residual de la sección.

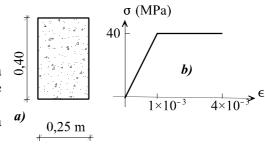


Figura 23